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PREFACE

Thispublicationis acollectionof thepresentations given at the NASA Computational Fluid
Dynamics (CFD) Conference held at NASA Ames Research Center, Moffett Field, California,

March 7-9, 1989. The objectives of the conference were to disseminate CFD research results to

industry and university CFD researchers, to promote synergy among NASA CFD researchers, and to
permit feedback from researchers outside NASA on issues pacing the discipline of CFD. The focus

of the conference was on the application of CFD technology but also included fundamental

activities. The conference was sponsored by the Aerodynamics Division, Office of Aeronautics and

Space Technology (OAST), NASA Headquarters, Washington, DC 20546.

The conference consisted of twelve sessions of papers representative of CFD research conducted

within NASA and three non-NASA panel sessions. For each panel session, the panel membership
consisted of industry and university CFD researchers. A summary of the comments made during the

panel sessions have been included in this publication.

The conference proceedings are published in two volumes. Volume 1 contains the papers presented

in Sessions I-V/; Volume 2 contains those given in Sessions VII-XII. Each volume contains the

same front matter, and each contains a list of attendees as an appendix.
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NASA CFD Conference
NASA Ames Research Center

March 7-9, 1989

Panel Sessions Summary

The NASA CFD Conference was held at Ames Research Center on March 7-9,
1989. To conclude each day's presentations, a panel session with participation
from the audience furnished a great deal of excellent feedback from the industry
and academic communities. During the conference it was evident that the panel
members proffered comments only after having spent considerable time in
preparing them.

The members of the panel sessions are listed below:

March 7 P. Rubbert - Boeing Commercial Airplanes
R. Melnik - Grumman Aerospace Corporation
D. Whitfield - Mississippi State University

March 8 I. Bhateley - General Dynamics - Fort Worth Division
R. Agarwal - McDonnell Douglas Research Laboratories
R. MacCormack - Stanford University

March 9 V. Shankar - Rockwell International Science Center

J. Carter - United Technologies Research Center
A. Jameson - Princeton University

The crucial comments from the three panel sessions have been combined and are
summarized as follows:

- NASA's CFD program is now too heavily focused on applications: program
balance has swung from fundamentals (1970's) to applications (1980's)

- Three critical "needs" emerged:

(I) More algorithm research is needed; especially for Navier-Stokes
solvers with unstructured grids

(2) More research is required on geometric modelling; need rapid,
accurate, and effective surface definition techniques

(3) More research is needed on grid generation methods with the focus
on speed, efficiency, and grid quality to reduce set up time and
complexity

- Developers of CFD need to understand the needs of the users; designers of
aerospace vehicles have requirements that are different than the CFD
researchers perceptions

- Industry needs more reliable and cost effective CFD tools



Additional detail comments from the three panel sessions are listed below:

- CFD has matured during the last decade and is being used to solve real
problems; however, industry lacks confidence in Navier-Stokes solutions

- Industry needs codes that have been validated to increase confidence in
CFD technology

- Improved communality between codes would increase usability; standards
are needed

- Improved data storage, networking, data transfer, and graphics required to
assimilate information provided by CFD

- Improved turbulence modeling for separated flows

- Accurate prediction of drag for complete powered aerospace vehicles

- Develop multidisciplinary CFD technology with optimization capability

- NASA must maintain focus on techn0!0_gy development and high risk
research

- Technology transfer is not complete until design engineers are using CFD
codes successfully .

- Industry needs NASA to improve CFD technology for codes simpler than
Navier-Stokes solvers

- NAS program has been extremely helpful to industry in transferring CFD
technology

Industry needs to be more aggressive in their use of CFD

Improved understanding of CFD by design engineers required; cooperative
programs or workshops were suggested to bring CFD researchers and
designers together

Design cycle time needs to be reduced with CFD; codes must be cost
effective, reliable, and useable, and robust to work at flight Reynolds
Numbers

- Improved coordination/reduced overlap of CFD applications between NASA
centers
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COMPUTATIONAL FLUID DYNAMICS PROGRAM

AT NASA AMES RESEARCH CENTER

Terry L. Hoist

Chief, Applied Computational Fluids Branch
NASA Ames Research Center, Moffett Field, California

ABSTRACT

The Computational Fluid Dynamics (CFD) Program at NASA Ames Research Center is
reviewed and discussed. The presentation is broken into several sections as follows: First, the
technical emements of the CFD Program are generally listed and briefly discussed. These
elements include algorithm research, research and pilot code development, scientific
visualization, advanced surface representation, volume grid generation, and numerical
optimization. Next, the discipline of CFD is briefly discussed and related to other areas of
research at NASA Ames including Experimental Fluid Dynamics, Computer Science Research,
Computational Chemistry, and Numerical Aerodynamic Simulation. These areas combine with
CFD to form a larger area of research, which might collectively be called computational
technology. The ultimate goal of computational technology research at NASA Ames is to
increase the physical understanding of the world in which we live, solve problems of national
importance, and increase the technical capabilities of the aerospace community.

Next, the major programs at NASA Ames that either use CFD technology or perform research
in CFD are listed and discussed. Briefly, this list includes turbulent/transition physics and
modeling, high-speed real gas flows, interdisciplinary research, mrbomachinery demonstration
computations, complete aircraft aerodynamics, rotorcraft applications, powered lift flows, high
alpha flows, multiple body aerodynamics, and incompressible flow applications. Some of the
individual problems actively being worked in each of these areas is listed to help define the
breadth or extent of CFD involvment in each of these major programs.

State-of-the-art examples of various CF'D applications are presented to highlight most of these
areas. The main emphasis of this portion of the presentation is on examples which will not
otherwise be treated at this conference by the individual presentations. Thus, a good survey of
CFD applications research at NASA Ames can be obtained by looking at this presentation in
conjunction with the individual NASA Ames presentations made at this conference.

Finally, this overview is concluded with a list of principal current limitations and expected
future directions. Some of the future directions include algorithm research, turbulence/transition
research, multidisciplinary research, graphics and workstation research and applications which
will address more realistic simulations in the engineering world.
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Computational Fluid Dynamics at the Lewis Research Center
An Overview

By
Robert M. Stubbs

NASA-Lewis Research Center

Cleveland, Ohio 44135

Lewis is a multidisciplinary Center with strong research and

development programs in aeronautical and space propulsion, power,

space communications, space experiments and materials.
Computational fluid dynamics (CFD) is playing an important and

growing role in most of these areas. This presentation describes
how CFD is integrated into these programs and highlights elements

of the CFD activities. Examples are presented of codes developed to
predict flow fields in advanced propulsion systems and several of
the code validation experiments are described. As will be evident in

the several Lewis authored papers to be presented at this

conference, the CFD effort at Lewis ranges from basic research on
new and improved algorithms through code development to the

application of these codes to specific engineering problems.
Because of the substantial improvement in CFD's predictive

capability its use at Lewis is on a steep growth path, spreading
rapidly into new areas which had not traditionally taken advantage
of the techniques of numerical simulation. The presentation

concludes with a discussion of multidisciplinary codes and the
future direction of CFD at Lewis.
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Harshall Space Flight Center CFD Overview

L. A. Schutzenhofer, NASA/MSFC

Computational Fluid Dynamics (CFD) activities at Marshall Space

Flight Center (MSFC) have been focused on hardware specific and

research applications with strong emphasis upon benchmark

validation. The purpose of this overview is to provide insight

into the MSFC CFD related goals, objectives, current hardware

related CFD activities, propulsion CFD research efforts and

validation program, future near-term CFD hardware related

programs, and CFD expectations. The current hardware programs

where CFD has been successfully applied are the Space Shuttle
Main Engines (SSME), Alternate Turbopump Development (ATD), and

Aeroasslst Flight Experiment (AFE). For the future near-term

CFD hardware related activities, plans are being developed that

address the implementation of CFD into the early design stages

of the Space Transportation Main Engine (STME), Space

Transportation Booster Engine (STBE), and the Environmental

Control And Life Support System (ECLSS) for the Space Station.

Finally, CFD expectations in the design environment will be
delineated.
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Johnson Space Center CFD Overview

C. P. Li

Advanced Programs Office

Johnson Space Center, Houston, Tx 77058

Recent applications and development of CFD technology have focused on flow

problems that are critically important to the operation and design of space flight

vehicles. The main effort is spent on the Space Shuttle in order to provide an un-

derstanding of the cryogenic fluid in the duct connecting the External Tank and

the Main Engines, the subsonic flow surrounding the Orbiter during crew egress

maneuvers, the transonic aerodynamic forces on the the Orbiter fuselage and wing,

the high angle-of-attack abort flight, and the aerodynamic heating during entry.
To provide in-depth analyses for such diverse problems within a timely sche_tuIe,

matured panel codes and a state-of-the-art incompressible turbulent flow code were

adapted. Collaboration with Ames Research Center has resulted in a Shuttle ascent

aerodynamic code; and a viscous chemical nonequilibrium code is being developed

for predicting Orbiter real-gas aerodynamics and finite-catalytic heating. The re-

maining activities are devoted to the prediction of the flow environment around the

Aeroassist Flight Experiment vehicle at hypersonic speeds and high altitudes. A

thermochemical nonequilibrium Navier-Stokes Code has been developed on the ba-

sis of two- temperature and ll-species models for solving both the shock layer and

near wake. After validating the code against wind-tunnel aerodynamic, pressure

and heating data, the code is being used to supplement the ground test facilities

in predicting a more realistic flight environment. CFD technology is being relied

upon by other programs as well in the consideration of candidate configurations. A

biconic cone entering the Martian atmosphere at moderate angles of attack will be

analyzed for its stability and heating distribution for the proposed mission. Capa-

bilities of simulating the low and medium lift-to-drag vehicles flowfield flying back

from the Space Station have been demonstrated and will be enhanced to include

winglets. The development of hypersonic CFD technology at JSC will contiaously

emphasize the modeling of radiation and ablation in continuum flow regime, suffi-
cient realism of geometry, and efficiency of computational methods.
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N91-10845

NASA'S CFD VALIDATION PROGRAM

by

Dale R. Satran

Program Manager
Aerodynamics Division

NASA Headquarters

With computational fluid dynamics (CFD) becoming a productive research
and design tool, the requirement to validate CFD codes has grown
significantly. NASA has emphasized CFD validation activities since 1986
when a separate work element was formed to fund experimental activities
related to validation. NASA's CFI)and CFD validation programs are
closely coordinated to ensure that experimental data bases are available as
soon as possible for validating codes. In response to industry and academic
requirements, four levels of experimental research have been defined as
part of CFD validation with NASA's Aeronautics Advisory Committee
(AAC) support although only the fourth level actually has the detailed
information necessary for validating codes.

Criticalflow physics especiallyturbulence modeling are key to improved
CFD codes. NASA has focused additionalresources on transitionand

turbulence physics to meet these requirements. With improved turbulence

models, CFD codes willbe more accurate, robust,and efficient.However,

with the levelof detailedinformation availablefrom CFD codes,highly

accurate and detailed experiments are required to capture the critical
information for validating codes. Advanced instrumentation especially

non-intrusive instrumentation is required to acquire this information in
validation experiments. The CFD validationprogram is being coordinated

and managed to address these criticalactivities.A listofexperiments

which are currently being supported at least partiallyhas been included
with thispresentation.
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AMES CFD VALIDATION PROGRAM FOR FY 1989

LEX/DELTA VORTICAL FLOW
TRANSONIC LOW ASPECT RATIO WING-BODY
REARWARD FACING STEP
SSME TURNAROUND DUCT
SUPERSONIC SHOCK BOUNDARY LAYER INTERACTION
COMPRESSIBLE PRESSURE-DRIVEN 3-D INTERACTIONS
2-D TRANSONIC CIRCULATION CONTROL
3-D SPIN FLOWS
3-D LOW SPEED WEDGE FLOW WITH SEPARATION
TRANSONIC SUPERCRITICAL AIRFOIL
LOW SPEED HIGH ALPHA INVESTIGATION
CFD VALIDATION FOR WING AERODYNAMICS
3-D HIGH ASPECT RATIO SEPARATED FLOW
STOVL AERO/PROPULSION INTERACTION
THERMO-CHEMICAL NONEQUILIBRIUM FLOWS
PHOTODIAGNOSTIC INSTRUMENTATION
UNSTEADY VISCOUS FLOW
HYPERSONIC SHOCK BOUNDARY INTERACTION
TURBULENT SHEAR LAYERS
TURBULENT BOUNDARY LAYERS

ALL-BODY _ERSONIC TEST
HIGH SPEED ROTOR FLOWS
HYPERSONIC REAL GAS
SHOCK TUNNEL NOZZLE TESTS
3.5' HWT NOZZLE TESTS
COMBUSTION/DETONATION
FLIGHT/CFD CORRELATION OF F-18 WING PRESSURES AT HIGH ALPHA
SUPERSONIC VORTEX-SHOCK WAVE INTERACTION

132



LANGLEY CFD VALIDATION PROGRAM FOR FY 1989

TRANSONIC HIGH ASPECT-RATIO WING
TRANSONIC LOW ASPECT RATIO WING
REARWARD FACING STEP IN WATER TUNNEL
REARWARD FACING STEP IN BART
DELTA WING VORTEX FLOWS
SUPERSONIC COAXIAL JET
TURBULENT MODELING IN SEPARATED FLOWS
45-DEG SWEEP AIRFOIL
BARF LDV TEST
SUPERSONIC BOUNDARY LAYER TRANSITION

NTF FLAT PLATE TEST
VORTEX BURST EXPERIMENTS
HYPERSONIC FLIGHT INSTRUMENTATION
HYPERSONIC INLET TESTS IN HELIUM
HYPERSONIC SHOCK-ON-LIP
HALIS ORBITER EXPERIMENT
BLUNT BODIES (AOTV/AFE) EXPERIMENT
HYPERSONIC WINGED SLENDER BODY
OSCILLATING CANARD/WING UNSTEADY PRESSURES
VALIDATION OF JET PLUME MODULES
SUPERSONIC JET PLUME DYNAMICS
SUPERSONIC HIGH-ALPHA FLOWFIELD
OFF-AXIS WING-BODY STUDY
STORE/CAVITY SEPARATION EXPERIMENTS
WAVERIDER DESIGN PROCEDURE
5 DEG CONE EXPERIMENT
75/76-DEG DELTA WINGS
NTF FOREBODY/MISSLE MODEL
LEADING EDGE VORTEX FLAP
X-29 EXPERIMENT IN NTF
3-D TRANSONIC CAVITY FLOW
LOW REYNOLDS NUMBER AIRFOIL EXPERIMENTS
CONFLUENT BOUNDARY LAYER
GORTLER INSTABILITY ON AIRFOILS
EXPERIMENTAL INVESTIGATION OF TURBULENCE
RANGE AND ACCURACY OF THIN FILM ARRAYS
JUNCTURE FLOW EXPERIMENT
SWEPT SUPERCRITICAL HLFC AIRFOIL EXPERIMENTS
TWIN ENGINE AFTERBODY EXPERIMENT
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LEWIS CFD VALIDATION PROGRAMFOR FY 1989

3-DSHOCK WAVEfI'URBULENT BOUNDARY LAYER INTERACTIONS
3-DFLOWSIN HIGH SPEEDTURBOMACHINERY
BLADE SURFACEBOUNDARY LAYER
FUNDAMENTAL SEPARATIONBUBBLE RESEARCH
AIRFOIL (BLADING) FLOW CONTROL
LEADING EDGE STAGNATION REGION
BOUNDARY LAYERS IN TRANSITION
UNSTEADY HEAT TRANSFERIN ROTORWAKES
TRANSITION DUCT - AERO & HEAT TRANSFER
VORTEXGENERATORS
SHEAR LAYER EXCITATION - JET MIXING
SHEARLAYER EXCITATION - SLOTRESONATOR
MULTI-PHASE FLOWS
MULTI-PHASE FLOW AND FLUID SPRAYSTUDY
LOW TEMPERATUREHEAT TRANSFER
FUEL SWIRLER CHARACTERIZATION
COMBUSTION CHARACTERISTICSOF HYDROCARBONFLAMES
KINETIC STUDYOF H2/O2SYSTEM
FLOW INTERACTION EXPERIMENT
HOT GASINGESTION
COHERENTSTRUCTURESIN SUPERSONICSHEARLAYER
AERO CHARACTERISTICSOF AIRFOIL WITH ICE ACCRETION
TURBOMACHINERY BLADE ROW INTERACTIONS
SUPERSONICTHROUGH-FLOWCASCADERESEARCH
CENTRIFUGAL COMPRESSORFLOW RESEARCH
SUPERSONICTHROUGH-FLOWFAN RESEARCH
HIGH REYNOLDSNUMBER (HEAT TRANSFER)
DETAILED AERO OF ADVANCEDTURBOPROPS
FUEL RICH CATALYTIC COMBUSTION

-134



SESSION III

TRANSITION AND TURBULENCE

Chairman"

Thomas A. Pulliam
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N91-10846

UNDERSTANDING TRANSITION AND TURBULENCE

THROUGH DIRECT SIMULATIONS

P. R. Spalart & J. J. Kim

A. R. C., C. F. D. Branch, Turbulence Physics Section

Direct simulations consist in solving the full Navier-Stokes equations,

without any turbulence model, and describing all the detailed features of the

flow. Usually the flows are three-dimensional and time-dependent and contain

both coarse and fine structures, which makes the numerical task very chal-

lenging in terms of both the algorithm and the computational effort. Most

of the work until now has involved spectral methods, which are highly accu-

rate but not very flexible in terms of geometry or complex equations. For

that reason, future work will also rely on high-order finite-difference or other

methods.

Direct simulations complement experimental work, and both contribute

to the theory and the empirical knowledge of turbulence. Once such a sim-

ulation has been shown to be accurate the flow field is completely known, in

three dimensions and time, including the pressure, the vorticity and any other

quantity. On the other hand, most simulations to date solved the incompress-

ible equations in rather simple geometries, and direct simulations will always

be limited to moderate Reynolds numbers. Extensive simulations have been

conducted in homogeneous turbulence, channel flows, boundary layers, and

mixing layers. Much effort is devoted to addressing flows with compressibil-

ity and chemical reactions, and to new geometries such as a backward-facing

step.
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N91-10847

Direct Simulation of Compressible Turbulence

T.A. Zang and G. Erlebacher

NASA Langley Research Center

M.Y. Hussaini

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center

The physics of turbulence remains one of the most challenging problems in fluid dynam-

ics. Although more than a century of effort has been devoted to it, a lot of fundamental

issues axe still unresolved. This is particularly so in the case of turbulence in high speed

flows because of the increased number of possible mode interactions due to compressibility

effects. For example, the cubic non-lineaxities in the momentum equations allow the vor-

ticity, acoustic and entropy modes to interact with each other. The dynamics axe further

complicated by the possible existence of non-stationary shocks and/or eddy shocklets.

In this paper, several direct simulation_ of 3-D homogeneous, compressible turbulence

are presented with emphasis on the differences with incompressible turbulent simulations.

A fully spectral collocation algorithm, periodic in all directions coupled with a 3rd order

Runga-Kutta time discretization scheme is sufficient to produce well-resolved flows at Tay-

lor Reynolds numbers below 40 on grids of 128x128x128. A Helmholtz decomposition of

velocity is useful to differentiate between the purely compressible effects and those effects

solely due to vorticity production. Ink the context of homogeneous flows, this decompo-

sition is unique. Time-dependent energy and dissipation spectra of the compressible and

solenoidal velocity components indicate the presence of localized small scale structures.

These structures are strongly a function of the initial conditions. We concentrate on a

regime characterized by very small fluctuating Mach numbers Ma (on the order of 0.03)

and density and temperature fluctuations much greater than Ma 2. This leads to a state in

which more than 70% of the kinetic energy is contained in the so-called compressible com-

ponent of the velocity. Furthermore, these conditions lead to the formation of curved weak

shocks (or shocklets) which travel at approximately the sound speed across the physical

domain. Various terms in the vorticity and divergence of velocity production equations are

plotted versus time to gain some understanding of how small scales are actually formed.

Possible links with Burger turbulence axe examined.

To visualize better the dynamics of the flow, new graphic visualization techniques have

been developed. The 3-D structure of the shocks axe visualized with the help of volume

rendering algorithms developed in house. A combination of stereographic projection and

animation greatly increase the number of visual cues necessary to properly interpret the

complex flow. The presence or absence of shocks is automatically detected by monitoring

of the minimum and maximum divergence of the velocity field over the physical domain.
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N91-10848

Non Linear Evolution of a Second Mode Wave in Supersonic Boundary Layers

G. Erlebacher

NASA Langley Research Center

M.Y. Hussaini

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center

Recent advances in supersonic and hypersonic aerospace technology have led to a renewed

interest in the stability and transition to turbulence of high speed flows. The last 30 years have

intermittently witnessed some vigorous attempts to understand some of the fundamental routes

to transition for incompressible flows. While a fairly comprehensive picture of the initial stages

leading to the breakdown of an incompressible laminar boundary layer has emerged (mostly under

controlled conditions) the non-linear effects responsible for transition at high speeds are still very
much a mystery. However, the current nonlinear incompressible theories, numerical simulations mad

experiments will, hopefully, serve as a guide in gaining a better understanding of the mechanisms

present in the supersonic and hypersonic regimes.

Compressible linearstabilitytheory divergesfrom incompressiblelinearstabilitytheoryin sev-

eralways. Incompressibleinviscidinstabilities,linkedwith the existenceof an inflectionpoint in

the mean streamwise velocityprofileare replaced by a correlationbetween inviscidcompressible

instabilitiesand a generalizedinflectionpoint,which brings into play the mean densityprofile.

Furthermore, as the Mach number increases,the growth rateof the 3-D modes begin to overtake

those of the 2-D modes. Beyond Mach 2.2,multipleunstable modes (at fixedReynolds number

and frequency)can coexist.The highermodes are inviscidinnature and have differentbehaviors

with regard to wall cooling. Not only are they more unstable than theirfirstmode counterparts

(viscousinnature) above a certainMach number, but they are destabilizedby wallcooling,which

isdetrimentalfor high altitudehypersonic aircraft.

Itisof vitalimportance that the nonlinearnature ofthesesecond mode inst.abilitiesbe under-

stood,and that theirrolein the contextof transitionbe elucidated.The objectiveofthe work is

to understand the possibleequilibriumstateof a second mode wave, beforeinitiatinga study of

3-D wave interactions.

Two years ago, a spectralcode was developed to perform directsimulationsof subsonic and

supersonicflows over flatplates.In thispaper, we presentseveraldirectsimulationsof one 2-D

second mode perturbationwave, superimposed upon a prescribedmean flow.Periodicityisassumed

in the streamwise direction(Fourier)and the variablesare expanded in Chebyshev seriesin the

directionnormal to the plate. The code isfullyexplicitand istime advanced with a 3rd order

Runga-Kutta scheme. The second mode wave (R_. = 8000),interactswith itselftogeneratehigher

streamwise harmonics. Physicalparameters are chosen to maximize the lineargrowth rate at the

prescribedReynolds number. Initialresultsindicatethat the nonlinear processesbegin in the

criticallayerregionand are the resultofthe cubicinteractionsin the momentum equations,rather

than due to the higher streamwise harmonics. Analysis of the variousterms in the momentum

equationscombined with numericalexperiments inwhich variousmodes are artificiallysuppressed,

lead to the conclusion that asymptotic methods willproduce the saturated statein one or two

ordersofmagnitude lesscomputer time than that requiredby the directnumerical simulations.
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NUMERICALSIMULATION OF NONLINEARDEVELOPMENTOF INSTABILITY WAVES

Reda R. Mankbadi

Institute for Computational Mechanics in Propulsion
National Aeronautics and Space Administration

Lewis Research Center

Cleveland, Ohio 44135, U.S.A.

and

Cairo University
Cairo, Egypt

O0
t.c)
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SUMMARY

The present work is concerned with the nonlinear interactions of high
amplitude instability waves in turbulent jets. In plane shear layers Riley
and Metcalf (1980) and Monkewitz (1987) have shown that these interactions are

dependent, among other parameters, on the phase-difference between the two
instability waves. Therefore, in the present work we cons|der the nonlinear
development of both the amplitudes and the phase of the instability waves. The
development of these waves are also coupled with the development of the mean
flow and the background turbulence. In formulating this model it is assumed
that each of the flow components can be characterized by conservation equations
supplemented by closure models. Results for the interactions between the two

instability waves under high-amplitude forcing at fundamental and subharmonic
frequencies are presented here. Qualitative agreements are found between the
present predictions and available experimental data.

CONSERVATION EQUATIONS

Each flow component is split in the form:

Ui(x,r,t) : Ui(x,r) + (x,r,t) + ui(x,r,t)

is the time-averaged mean flow velocity which Is taken to be given by the
two-stage hyperbolic tangent profile. 0 is the periodic component which is
split into two frequency-components in the form:

_^ i@l(x)-imlt _ 1@2(x)-i_2t
_i = AI'Uil(r'e) e + A2 u2i(r,8) e + c.c.

u is the radial shape taken as the elgen-function solution of the locally-
parallel linear stability equation for each frequency-component. A and ¢
are the amplitude and phase to be obtained from the nonlinear interaction equa-
tions, and e is the momentum thickness u' is the turbulence component which
is related to the turbulence energy T through an assumed Gaussian profile.

THE NONLINEAR INTERACTION EQUATIONS

Time-averaging and phase-averaglng techniques are applied to the full
unsteady Navler-Stokes equations to derive the governing equations for each
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flow component. These equations are manipulated to obtain nonlinear equations
for the amplitudes A1, A2, phases @1, $2, momentum thickness e and the tur-
bulence energy T:

Mean flow

dlma1 de 9 9

-ImtT- I mA_ - 12 A_2' "de dX "

Turbulence

d [itaT]. Imt T + I tA?T + I2_tA_T-I T3/2

_x_component

_x [I_aA_] = I_mA_-I_tA_T+ 12_xaAzA_cos(2¢_- @2u- ¢o + _)

dew
I a _ - xS_ + I*_m+ A212_ sin(2¢_ - ¢2_ - @o + o)

2_-component

d_ II2_aA_] = 12_mA_ - I2_tA_T- 12_xA2A_ cos(2@_- @2u- @o + °)

d@2_ sS2_ A_
12_a dX - + l_m - _22 12_x_sin(2¢_ - @2_ - ¢o + o)

The integrals I appearing In the above equations are functions of Q, fre-
quencles, and the closure assumptions. S is the Strouhal number defined as
_d/(2_U). The solution of the above system of equations Is subject to the Ini-

tial conditions at x = O: eo, To, Alo, A2e, and @o.

RESULTS AND DISCUSSIONS

The calculated fundamental and subharmonic components at Strouhal numbers
0.3 and 0.6 are shown tn figure 1 for several initial phase angles. The fni-
tial momentum thickness Is 0.026 R, Initial turbulence energy levels Is 0.0001
the inltial energies of the fundamental and subharmonic are taken such that
the Initial Instability velocity components at the jet centerllne are 1.2 and
0.6 percent, respectively. Figure I shows that the fundamental is not sensi-
tive to the phase-difference as much as the subharmonlc does. Bradley and Ng's
(1989) measured integral spectral amplitude shows similar features. The funda-
mental ts less dependent than the subharmonlc on the phase angle. Maximum
subharmonlc amplification occurs at ¢o = 180" and minimum sdbharmonic's ampll-
ficatton occurs at ¢o = 0°, same as the present results In figure l(b).

The calculated centerllne phase-averaged velocities are shown in figure 2

in comparison wlth the data of Arbey and Ffowcs-Williams (1984). The Strouhal
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numbers are 0.3 and 0.6, the initial turbulence energy level is 0.00001, ini-

tial momentum thickness is 0.012. The inltial centerIine velocity of the
S = 0.3 component is taken 1.5 percent and that of the S = 0.6 is 0.38 of the
S = 0.3 component as in the experiment. At S = 0.3, flgure 2(a) shows that
calculate peak occurs further down stream as compared to the measured ones.
However, the calculated peak has the same level as the measured one. The peak
increases when ¢o is changed from 0 to IBO°, as the present computations also
predict. The calculated phase averaged velocities at S = 0.6 shown in fig-
ure 2(b) has the same features as the measured one; same level of amplification

and same dependency on @o- The measured component increases again after it
decays which is probably due to its interaction with other frequency compo-
nents. This mechanism is not accounted for here.

"The dependency of-the subharmonic amplification on the initial phase angle

is shown in figure 3 for Stro0_al numbers 0.2 and 0.4. The initial levels are
_fo = 7 percent, Uso - 0.5 percent. The peak of the subharmonic at @0 : 270°
is three tlmes higher than its peak at ¢o " 90°. The corresponding momentum
t_ickness is shown in figure 4, tompared to the unexcited momentum thickness.
The figure shows that the momentum thickness is only weakly dependent on the
phase angle. This indicates that the dlr_ct role of the subharmonic in turbu-
lent jets in controllln_ the mixing Is less pronounced as compared to its role
in controlling the mixing in Laminar jets. However, the subharmonic can still
have a strong role in the mixing process through enhancing the background tur-
bulence which in turn increases the mixing.

If both the fundamental and subharmonic's initial levels are high, the
dependency on the phase angle is less pronounced as figure 5 indicates. The
Strouhal numbers are 0.3 and 0.6 and the initial levels are if = Us " 3 per-
cent. At high initial levels, large energy levels are drained from the mean
flow and therefore the fundamental-subharmonIc energy exchanges are relatively
smaller and consequently less pronounced.

The effect of the forcing level at a fundamental frequency of S = 0.4 on
the subharmonic's amplification is shown in figure 6. The figure shows that
the peak of the subharmonic increases with increasing the forcing level. How-
ever, a saturation condition occurs around a forcing level of lO percent.
Higher forcing levels result in no further increase of the subharmonic's peak
over 20 percent.
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More Accurate Predictions with Transonic Navier-Stokes

Methods Through Improved Turbulence Modeling

by

Dennis A. Johnson

Experimental Fluid Dynamics Branch
NASA Ames Research Center

Because the aerodynamic characteristics of aircraft in the transonic
regime are so sensitive to viscous effects, the selection of the turbulence model
for a transonic prediction method is no less important than the selection of the
numerical algorithm. Yet, the usual practice in transonic airfoil, Reynolds-
Averaged, Navier-Stokes codes has been to employ "equilibrium" algebraic tur-
bulence models. Satisfactory results are obtained with these turbulence models
for weak interaction cases (i.e., cases where the upper surface shock wave is too
weak to have a major effect on the turbulent boundary layer). Such is not the
situation for cases where the shock wave is sufficiently strong to cause

separation. The danger in using these "equilibrium" turbulence models for
airfoil design is that they can result in unduely optimistic projections of aircraft
performance at off-design conditions.

Significant improvements in predictive accuracies for off-design con-
ditions are achievable through better turbulence modeling; and, without neces-
sarily adding any significant complication to the numerics. One well established
fact about turbulence is it is slow to respond to Changes in the mean strain field.
With the "equilibrium" algebraic turbulence models no attempt is made to model
this characteristic and as a consequence these turbulence models exaggerate the
turbulent boundary layer's ability to produce turbulent Reynolds shear stresses
in regions of adverse pressure gradient. As a consequence, too little momentum
loss within the boundary layer is predicted in the region of the shock wave and
along the aft part of the airfoil where the surface pressure undergoes further
increases.

Recently, a "nonequilibrium" algebraic turbulence model was formulated
which attempts to capture this important characteristic of turbulence. This

"nonequilibrium" algebraic model employs an ordinary differential equation to
model the slow response of the turbulence to changes in local flow conditions. In
its originial form, there was some question as to whether this "nonequilibrium"
model performed as well as the "equilibrium" models for weak interaction cases.
However, this turbulence model has since been further improved wherein it now

appears that this turbulence model performs at least as well as the "equilibrium"
models for weak interaction cases and for strong interaction cases represents a

very significant improvement.

The performance of this turbulence model relative to popular
"equilibrium" models is illustrated for three airfoil test cases of the 1987 AIAA
Viscous Transonic Airfoil Workshop, Reno, Nevada. A form of this
"nonequilibrium" turbulence model is currently being applied to wing flows for
which similar improvements in predictive accuray are being realized.
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COMPUTATIONS OF THREE-DIMENSIONAL STEADY

AND UNSTEADY VISCOUS INCOMPRESSIBLE FLOWS

Dochan Kwak, Stuart E. Rogers
NASA Ames Research Center

Seokkwan Yoon, Moshe Rosenfeld, and Leon Chang
MCAT Institute

The INS3D family of computational fluid dynamics computer codes is presented. These codes

are used to as tools in developing and assessing algorithms for solving the incompressible Navier-

Stokes equations for steady-state and unsteady flow problems. This work involves applying the

codes to real-world problems involving complex three-dimensional geometries. The algorithms
utilized include the method of pseudocompressibility and a fractional step method. Several ap-

proaches are used with the method of pseudocompressibility including both central and upwind

differencing, several types of artificial dissipation schemes, approximate factorization, and an im-
pllcit line-relaxation scheme. These codes have been validated using a wide range of problems

including flow over a backward-facing step, driven cavity flow, flow through various type of ducts,

and steady and unsteady flow over a circular cylinder. Many diverse flow applications have been

solved using these codes including parts of the Space Shuttle Main Engine, problems in naval
hydrodynamics, low-speed aerodynamics, and biomedical fluid flows. The presentation details

several of these including the flow through a Space Shuttle Main Engine inducer, vortex shedding

behind a circular cylinder, and flow through an artificial heart.
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Application 4: Plume Flow

Flow features: Outer shear layer, barrel shock, Mach
disc, reflected shock, triple-point shear layer
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Initial grid and
Mach contours
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Adapted grid and
solution (after 3
iterations)

Comparison with
shadowgraph
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Application 5: Supersonic Inlet

Flow features: Corner shock, reflected shock and
expansion fan

Initial grid (101 x81) and density solution contours
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Application 5 continued: Adapted
grid (marching in j) and Solution

Input parameters: ASmin=.25, ASmax=2.5, _=.0005

I
@

1.00

_0.90

--0._1
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Application 5 continued: Adapted
Grid (marching in i) and Solution

Input parameters: jstep=false. ASmin=.25, Z=.O0!
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STREAM FUNCTION CONTOURS

Re=Sk, 96'192 grid, t=4000
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CFD for Applications to Aircraft Aeroelastlclty

Guru P. Guruswamy
Applied Computational Fluids Branch

NASA Ames Research Center
Moffett Field, California

Abstract

Strong interactions of structures and fluids are common in many engineering
environments. Such interactions can give rise to physically important phenomena
such as those occurring for aircraft due to aeroelasticity. Aeroelasticity can signif-
icantly influence the safe performance of aircraft. At present exact methods are
available for making aeroe|astic computations when flows are in either the linear
subsonic or supersonic range. However, for complex flows containing shock waves,
vortices and flow separations, computational methods are still under development.
Several phenomena that can be dangerous and limit the performance of an aircraft
occur due to the interaction of these complex flows with flexible aircraft components
such as wings. For example, aircraft with highly swept wings experience vortex in-
duced aeroelastic oscillations. Correct understanding of these complex aeroelastic
phenomena requires direct coupling of fluids and structural equations. This paper
provides a summary of the development of such coupled methods and its applica-
tions to aeroelasticity since about 1978 to present. A part of the paper discusses
the successful use of the transonic smaD perturbation theory(TSP) coupled with
structures. This served as a major stepping stone for the current stage of aeroe-
lasticity using CFD. The need for the use of more exact Euler/Navier-Stokes(ENS)
equations for aeroelastic problems is explained. The current development of un-
steady aerodynamic and aeroelastic procedures based on the ENS equations are
discussed. The paper illustrates aeroelastic results computed using both TSP and
ENS equations.
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APPLICATION OF UNSTRUCTURED GRID METHODS TO
STEADY AND UNSTEADY AERODYNAMIC PROBLEMS

John T. Batina

Unsteady Aerodynamics Branch
NASA Langley Research Center

Hampton, Virginia 23665-5225

Abstract

The presentation summarizes recent work in the Unsteady Aerodynamics Branch at NASA
Langley Research Center on developing unstructuredgrid methods for application to steady and
unsteady aerodynamic problems. The CAP-TSD transonic aeroelasticity code, which is based on
the transonic small-disturbance (TSD) theory, is described first to provide background
information to put the present work in context. The CAP-TSD code is the most fully-developed
code for aeroelastic analysis of complete aircraft configurations at the TSD equation level and
has been widely accepted throughout the U.S. aerospace industry. Currently, aeroelastic
analysis capabilities are being developed at NASA Langley for the Euler and Navier-Stokes
equations based on both structured and unstructuredgrids. The purpose of the presentation is to
describe the development of unstructured grid methods which have several advantages when
compared to methods which make use of structured grids. Unstructured grids, for example,
easily allow the treatment of complex geometries, allow for general mesh movement for
realistic motions and structural deformations of complete aircraft configurations which is
important for aeroelastic analysis, and enable adaptive mesh refinement to more accurately
resolve the physics of the flow. The presentation is therefore organized in three parts
including: (1) steady Euler calculations for a supersonic fighter configuration to demonstrate
the complex geometry capability; (2) unsteady Euler calculations for the supersonic fighter
undergoing harmonic oscillations in a complete-vehicle bending mode to demonstrate the general
mesh movement capability; and (3) vortex-dominated conical-flow calculations for highly-
swept delta wings to demonstrate the adaptive mesh refinement capability. The basic solution
algorithm is a multi-stage Runge-Kutta time-stepping scheme with a finite-volume spatial
discretization based on an unstructured grid of triangles in 2D or tetrahedra in 3D. The moving
mesh capability is a general procedure which models each edge of each triangle (2D) or
tetrahedra (3D) with a spring. The resulting static equilibrium equations which result from a
summation of forces are then used to move the mesh to allow it to continuously conform to the
instantaneous position or shape of the aircraft. The adaptive mesh refinement procedure
enriches the unstructured mesh locally to more accurately resolve the vortical flow features.
These capabilities are described in detail along with representative results which demonstrate
several advantages of unstructured grid methods. The presentation further discusses the
applicability of the unstructured grid methodology to steady and unsteady aerodynamic problems
and suggests directions for future work.
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Grid Generation and Inviscid Flow Computation
About Aircraft Geometries

Robert E. Smith

Analysis and Computation Division

NASA Langley Research Center

Abstract

Grid generation and Euler flow about fighter aircraft are described. A

fighter aircraft geometry is specified by an area ruled fuselage with an inter-

nal duct, cranked delta wing or strake/wing combinations, canard and/or

horizontal tail surfaces, and vertical tail surfaces. The initial step before

grid generation and flow computation is the determination of a suitable

grid topology. The external grid topology that has been applied is called a

dual-block topology which is a patched C 1 continuous multiple-block system

where, inner blocks cover the highly-swept part of a cranked wing or strake,

rearward inner-part of the wing, and tail components. Outer-blocks cover

the remainder of the fuselage, outer-part of the wing, canards and extended

to the far field boundaries. The grid generation is based on transfinite in-

terpolation with Lagrangian blending functions. This procedure has been

applied to the Langley experimental fighter configuration and a modified
F-18 configuration. Supersonic flow between Mach 1.3 and 2.5 and angles

of attack between 0 ° and 10° have been computed with associated Euler

solvers based on the finite-volume approach. When coupling geometric de-

tails such as boundary layer diverter regions, duct regions with inlets and

outlets, or slots with the general external grid, imposing C 1 continuity can

be extremely tedious. The approach taken here is to patch blocks together

at common interfaces where there is no grid continuity, but enforce conser-

vation in the finite-volume solution. The key to this technique is how to

obtain the information required for a conservative interface. We have used

the Ramshaw technique which automates the computation of propor-

tional areas of two overlapping grids on a planar surface and is suitable for

coding. We have generated internal duct grids for the Langley experimen-

tal fighter configuration independent of the external grid topology, with a
conservative interface at the inlet and outlet.
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A ZONAL NAVIER-STOKES METHODOLOGY FOR FLOW

SIMULATION ABOUT A COMPLETE AIRCRAFT

Jolen Flores

Abstract: The thin-layer, Reynolds-averaged, Navier-Stokes equations are

used to simulate the transonic viscous flow about the complete F-16A fighter air-

craft. These computations demonstrate how computational fluid dynamics (CFD)

can be used to simulate turbulent viscous flow about realistic aircraft geometries.

A zonal grid approach is used to provide adequate viscous grid clustering on all

aircraft surfaces. Zonal grids extend inside the F-16A inlet and up to the com-

pressor face while power on conditions are modeled by employing a zonal grid

extending from the exhaust nozzle to the far field. Computations are compared

with existing experimental data and are in fair agreement. Computations for the

F-16A in side slip are also presented.

Applied Computational Fluids Branch
NASA Ames Research Center

Moffett Field, CA. 94035

Presentation at NASA OAST CFD CONFERENCE

March 7-9, 1989

NASA Ames Research Center
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NUMERICAL SIMULATION OF F-18 FUSELAGE FOREBODY

FLOWS AT HIGH ANGLES OF ATTACK

Lewis B. Schiff*

Russell M. Cummings_

Reese L. Sorenson*
Yehia M. Rizk_:

NASA Ames Research Center

Moffett Field, CA 94035

Abstract

As part of the NASA High Alpha Technology Program, fine-grid Navier-Stokes solu-

tions have been obtained for flow over the fuselage forebody and wing leading edge exten-

sion of the F/A-18 High Alpha Research Vehicle at large incidence. The resulting flows
are complex, and exhibit crossflow separation from the sides of the forebody and from the

leading edge extension. A well-defined vortex pattern is observed in the leeward-side flow.

Results obtained for laminar flow show good agreement with flow visualizations obtained in

ground-based experiments. Further, turbulent flows computed at high-Reynolds-number

flight-test conditions (Moo -- 0.2, a = 30 °, and Re_ = 11.52 × 106) show good agreement

with surface and off-surface visualizations obtained in flight.

* Research Scientist, Applied Computational Fluids Branch.
National Research Council Research Associate. Associate Professor, on leave from

California Polytechnic State University, Aeronautical Engineering Department.

$ Member of the Professional Staff, Sterling Federal Systems, Inc., Palo Alto, CA.
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ORIGINALCONTAINS

COLORILLUSTRATIONS

NAVIER-STOKES SOLUTIONS FOR FLOWS

RELATED TO STORE SEPARATION

OKTAY BAYSAL
OLD DOMINION UNIVERSITY
NORFOLK, VIRGINIA 23529

ROBERT L. STALLINGS, JR.
ELIZABETH B. PLENTOVICH

NASA LANGLEY RESEARCH CENTER

HAMPTON, VIRGINIA 23665

The objective is developing CFD capabilities to obtain solutions for viscous flows

about generic configurations of internally and externally carried stores. The emphasis

Is placed on the supersonic flow regime with extensions being made to the transonic

regime. The project is broken into four steps : (A) Cavity flows for internal carriage

configurations; (B) High angle of attacl_flows, which may be experienced during the

separation of the stores; (C) Flows about a body near a flat plate for external carriage

configurations; (D) Flows about a body inside or in the proximity of a cavity. Three

dimensional unsteady cavlty flow solutions are obtained by an explicit, MacCormack

algorithm, EMCAV3, for open, close, and transitional cavities. High angle of attack flows

past cylinders are solved by an implicit, upwind algorithm. All the results compare

favorably with the experimental data. For flows about multiple body configurations,

the Chimera embedding scheme is modified for finite-volume and multigrid algorithms,

MaGGiE. Then a finite volume, implicit, upwind, multigrid Navier-Stokes solver which

uses on overlapped/embedded and zonal grids, VUMXZ3, is developed from the CFL3D

code. Supersonic flows past a cylinder near a flat plate are computed using this code.

The results are compared with the experimental data. Currently the VUMXZ3 code Is

being modified to accomplish step (D) of this project. Wind tunnel experiments are also

being conducted for validation purposes.
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N91-1o86 

TranAir: Recent Advances and Applications

Michael D. Madson

NASA Ames Research Center, Mofirett Field, CA

March 8, 1989

Abstract

"l_anAir is a computer code which solves the full-potential equation for transonic flow about very general

and complex configurations. Piecewise flat surface panels are used to describe the surface geometry. This

paneled definition is then embedded in an unstructured cartesian flow field grid. Finite elements are used
in the discretization of the flow field grid in a manner which is fully conservative and 2rid-order accurate.

Since geometries may be defined with relative ease, and since the user is not involved in the generation of

the flow field grid, computational results may be generated rather quickly for a wide range of geometries.
For transonic cases in the cruise angle-of-attack range, TranAir has generated results which are in generally

good agreement with both Euler results and wind tunnel data. A typical transonic case runs in 1-2 CPU

hours on a Cray X-MP. For subcritical cases, the code runs in 15-30 CPU minutes, even for geometries

in which several thousand surface panels are used in the definition. This ability to rapidly and accurately

provide both subsonic and transonic predictions about very complex aircraft configurations gives TranAir

the potential of being a very powerful and widely used design tool.

Acknowledgements

TranAir is being developed by Boeing Advanced Systems, Seattle, WA, under contract to NASA. The author

wishes to thank Forrester Johnson, Satish Samant, David Young, Robin Melvin and John Bussoletti for their

dedicated work in the development of the code, and for providing many of the results presented in the charts

which follow.
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U.S. Army Aeroflightdynamics
NASA Ames Research Center

Directorate





_ v v

 91-10863

NUMERICAL SIMULATION OF ROTORCRAFT*

W. J. McCroskey

U. S. Army Aeroflightdynamics Directorate-AVSCOM
and

NASA Ames Research Center, Moffett Field, California

The objective of this research is to develop and validate accurate, user-
oriented viscous CFD codes (with inviscid options) for three-dimensional,
unsteady aerodynamic flows about arbitrary rotorcraft configurations. This
effort draws heavily from the supercomputer capabilities of the National
Aerodynamic Simulation project, and it will provide significantly better
design and analysis tools to the rotorcraft industry. Better vehicles can be
designed at lower cost, with less expensive testing, and with less risk.

Unsteady, three-dimensional Euler and Navier-Stokes codes are being
developed, adapted, and extended to rotor-body combinations. Flow solvers
are being coupled with zonal grid topologies, including rotating and
nonrotating blocks. Special grid clustering and wave-fitting techniques have
been developed to capture low-level radiating acoustic waves.

Significant progress has been made in computing the propagation of acoustic
waves due to the interaction of a concentrated vortex and a helicopter airfoil.
In this study, the need for higher-order schemes was firmly established in
relatively inexpensive two-dimensional calculations. In three dimensions,
the number of grid poirtts required to capture the low-level acoustic waves
becomes very large, so that large supercomputer memory becomes essential.

Good agreement was obtained between the numerical results obtained with a
thin-layer Navier-Stokes code and experimental data from a model rotor. In
addition, several nonrotating configurations that are sometimes proposed to
simulate rotor blade tips in conventional wind tunnels were examined, and
the complex flow around the radical tip shape of the world's fastest
helicopter is under investigation. These studies demonstrate the flexibility
and power of CFD to gain physical insight, study novel ideas, and examine
various possibilities that might be difficult or impossible to set up in
physical experiments.

As a prelude to studies of rotor-body aerodynamic interactions, a
preliminary grid topology and moving-interface strategy has been developed.
A new Euler / Navier-Stokes code using these techniques computes the
vortical wake directly, rather than modeling it, as in most previous rotorcraft
studies. Several hover cases were run for conventional and advanced-

geometry blades. Numerical schemes using multi-zones and/or adaptive
grids appear to be necessary to simulate the complex vortical flows in rotor
wakes.

Although major improvements both in supercomputers and in codes will be
required, the present trends and rate of progress indicate that practical
computations of rotor-body combinations will be feasible in the mid-1990's.

*This research is performed by the Rotorcraft CFD Group, consisting of
James Baeder, Ryan Border, Earl Duque, G.R. Srinivasan, and Sharon
Stanaway, whose contributions are gratefully acknowledged.
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N91-10864

CALCULATION OF THE ROTOR INDUCED

DOWNLOAD ON AIRFOILS

C. S. Lee

Sterling Federal Systems, Inc.
NASA Ames Research Center

ABSTRACT

Interactions between the rotors and wing of a rotary wing

aircraft in hover have a significant detrimental effect on its payload

performance. The reduction of payload results from the wake of

lifting rotors impinging on the wing, which is at -90 degrees angle of

attack in hover. This vertical drag, often referred as download, can

be as large as 15% of the total rotor thrust in hover.

The rotor wake is a three-dimensional, unsteady flow with

concentrated tip vortices. With the rotor tip vortices impinging on

the upper surface of the wing, the flow over the wing is not only
three-dimensional and unsteady, but also separated from the leading

and trailing edges.

A simplified two-dimensional model was developed to

demonstrate the stability of the methodology. The flow model

combines a panel method to represent the rotor and the wing, and a

vortex method to track the wing wake. A parametric study of the

download on a 20% thick elliptical airfoil below a rotor disk of

uniform inflow was performed. Comparisons with experimental data

are made where the data are available. This approach is now being

extended to three-dimensional flows. Preliminary results on a wing

at -90 degrees angle of attack in free stream is presented.
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THREE-DIMENSIONAL VISCOUS DRAG PREDICTION

FOR ROTOR BLADES

CHING S. CHEN

NATIONAL RESEARCH COUNCIL

NASA AMES RESEARCH CENTER

SUMMARY

The state-of-the-art in rotor blade drag prediction involves the use

of two-dimensional airfoil tables to calculate the drag force on the

blade. One of the most serious problems with the current methods is

that they cannot be used for airfoils that have yet to be tested. Most

of the drag prediction methods also do not take the Reynolds number

or the rotational effects of the blade into account, raising doubts

about the accuracy of the results. This project addresses these

problems with the development of an analytical method which

includes the shape of airfoil, the effects of Reynolds number, and the
rotational motion of the blade.
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Progess Toward the Development of an Airfoil Icing Analysis Capability

M.G. Potapczek

C.S. Bidwell

NASA Lewis Research Center, Cleveland, Ohio

B.M. Berkowitz

Sverdrup Technology, Inc., Middleburg Hrs., Ohio

The NASA-Lewis aircraft icing analysis program is composed of three ma_or sub-programs.

These sub-programs are ice accretion simulation, performance degradation evaluation, and ice

protection system evaluation. These topics cover all areas of concern related to the simulation of

aircraft icing and its consequences. The motivation for these activities is twofold, reduction of time

and effort required in e.x_perimental programs and the ability to provide reliable information for aircraft

certification in icing, over the complete range of environmental conditions. In addition to the

analytical activities associated with development of these codes, several experimental programs are

underway to provide verification information for existing codes. These experimental programs are also

used to investigate the physical processes associated with ice accretion and removal for improvement of

present analytical models. The NASA-Lewis icing analysis program is thus striving to provide a full

range of analytical tools necessary for evaluation of the consequences of icing and of ice protection

systems.

Recently, two of these tools were used to produce a computational evaluation of the ice accretion

process and resulting performance changes for a NACA0012 airfoil. The ice accretion code, LEWICE,

provided the ice shape geometry at several points in time during the simulated icing encounter. The

predicted shapes are a function of several environmental input parameters, including airspeed,

temperature, water droplet size and distribution, liquid water content, and duration of the encounter.

These ice shape geometries are then used as input for a Navier-Stokes analysis code, ARC2D, which

calculates the flowfield and determines changes in performance characteristics of the airfoil. Presently,

there is no direct link between the two codes and all interfacing is done by the user. One of the

objectives of the icing analysis program is to combine codes such as these into a comprehensive icing

analysis method. Work in this area is currently underway via a number of grant supported activities.
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The Breakup of Trailing-Line Vortices

David Jacqmin

NASA Lewis Research Center

Cleveland, Ohio 44135

It is now known that Batchelor's trailing-line vortex is extremely unstable to

small amplitude disturbances for swirl numbers in the neighborhood of .83. We

present results of numerical calculations that show the response of the vortex in

this range of swirl numbers to finite amplitude, temporal, helical disturbances.

Phenomena observed include: 1) ejection of axial vorticity and momentum from

the core resulting in the creation of secondary, separate vortices; 2) a great in-

tensification of core axial vorticity and a weakening of core momentum; 3) the

production of azimuthal vorticity in the form of a tightly wrapped spiral wave. The

second phenomenon eventually stabilizes the vortex, which then smooths and grad-

ually returns to an axisymmetric state. The calculations are mixed spectral-finite-

difference, fourth-order accurate, and have been carried out at Reynolds numbers

of 1000-2000. Some linearized results will also be discussed in an attempt to explain

the process of vortex intensification.
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